NONLINEAR INTERACTIONS OF LANGMUIR WAVES
IN A WEAKLY INHOMOGENEOQUS PLASMA

B. V. Lundin UDC 533.9

Kinetic equations for the scattering of the waves of the one-dimensional spectrum by plasma
particles are obtained for a weakly inhomogeneous plasma. The equation for the evolution

of the spectrum of the short waves [k? > (me/mj) De %] trapped in the inhomogeneities of the
plasma density differs significantly from the kinetic equation for the waves in a homogeneous
plasma. The problem of localization on the spectrum of the Langmuir waves in regions near
the minima of the plasma density is also considered. A solution of the kinetic equation for the
waves, which describes this process, is obtained.

A number of papers [1-3] have dealt with the influence of a weak inhomogeneity of plasma density on
the effective interaction of particles and waves in a plasma. The presence of an inhomogeneity in real ex-
periments may greatly distort the dynamics of such processes in comparison with the model conditions of
the homogeneous plasma. Thus, in [1] it is indicated that an appreciable change takes place in the spectrum
of the Langmuir waves generated by an electron beam as a result of the existence of a weak inhomogeneity
in the plasma density in the beam propagation direction. The method of [1] can be applied to an analysis of
the nonlinear interaction of Langmuir waves of a one-dimensional spectrum.

Following [1], we consider a one~dimensienal inhomogeneity of the plasma density in the form

n(x) = ny (z) + An (z) (0.1)

where n; is the average value of the concentration and An(x) is a small time-independent devlation on the
concentration from the mean value. The spatial scale of the inhomogeneity a is assumed to be much larger
than the characteristic wavelengths of the spectrum under consideration,

a>h {0.2)

Under this condition, the Langmuir waves in the plasma can be described as a superposition of quasi-
particles (wave packets) whose distribution function satisfies the Liouville equation

oN om N dw ON
5t T e — 7w on = 2V (0.3)

where N=N (k, x, t) is the spectral density function of the quasiparticles, w=w (k, x) is the solution of the
dispersion equation, and vy =y (k, x, t) is the increment of the nonlinear scattering of the Langmuir waves
by the plasma particles, for in the absence of intense nonpotential oscillations in an isothermal plasma, the
conservation laws forbid three-plasmon processes for Langmuir waves of a one-dimensional spectrum (it
is assumed that the linear dampening is exponentially small).

Near the minimum density, the dispersion equation for the Langmuir waves takes the following form:

©* = o, () (1 + A E:g%) 13kt (0.4)
T, hme?
UzTe == —nT; , mpe (xg) = :: 7 (o)
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Here x, is the coordinate of the minimum of the density, An is the depth of the "inhomogeneity well"
(henceforth referred to simply as "well"), and « is its width.

When moving along the trajectory

o (&, 2) = o (ky, zo) (0.5)
quasiparticles with a sufficiently small wave number
1 An 1 v
R <gpge D=t ©.8)
pe

(the subscript 0 will henceforth pertain to quantities specified at the center of the well) experience reflec-
tion from the walls of the well at points where

k(z, ko) =0 (0.7)
[the function k(x, k) is obtained from the trajectory (0.5)].

We shall henceforth call such quasiparticles trapped, and their trajectories spaces arefinite. The in-
fluence of the inhomogeneity on the process of nonlinear scattering will be appreciable if

{1 90 (0.8)
o<+ | 5]

and in the opposite case the process will terminate before the inhomogeneity has time to greatly distort the
trajectory of the quasiparticle in the (k, X) phase space.

According to [4], the maximal nonlinear increment is determined by scattering by lons, and its order
of magnitude is

T = 0pW (1T W = w0, § Nk (0.9)

where W is the energy density of the Langmuir waves, Taking (0.8) and (0.9) mto account, we can write
down the inequality

WinT,<<D,/a (0.10)

which imposes a limitation on the energy density of the Langmuir oscillations, the interaction of which with
the particles is greatly influenced by the inhomogeneity.

The condition for the applicability of the nonlinear equations

Npe<€W /nT <1, Np,=*/smnD (0.11)

in conjunction with (0.10), imposes on the plasma density, for which the analysis that follows is valid, the
upper bound

n<& 31021 (T, /%2 (0.12)

1. Averaged Kinetic Equation for Waves

According to [1, 2], the kinetic equation for the waves, avéraged over the inhomogeneities, takes the
form

ON/ot = 2 (YO N (1.1)

For trapped quasiparticles, this equation describes the change in the number of plasmons at any
point of the trajectory of their motion (e.g., at the minimum density), and the spectra with respect to k and
w are rigorously related at this point by Eq. (0.5)

< :ng(%?>_ldx/§g <%?>—ldx (1.2)

Here x; and x, are the turning points of the plasmon (Fig. 1), and are determined from (0.7), while
ow (x)/ Ok is determined from (0.5). :

In addition to [1, 2], it is necessary to make the following remarks with respect to the nonlinear
scattering: since
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7} 4+ 1) = {w(k, &) ¥ () d’ (1.3)

» k=% . where w(k, k") is the scattering matrix element, and since the
- region in the well where quasiparticles with |ky'| < |k;| can
exist is smaller (Fig. 1) than the region where quasiparticles
with wave number k, exist, the integrals in (1.2) must in fact
be taken between the closest limits of the range in which the
two interacting waves exist.

7 - i
LK X bR X

Fig. 1

(S

Owing to the change of the phase volume in k space
when moving the trajectory (0.5), it is convenient to change
over in (1.3) to integrationwith respect to w by using relation (0.5). Taking into account the inequality
(0.8) and the symmetry of the well with respect to the point of the minimum density, we can write

<)) = Sdo)’N 1K (0] [izw(k, K (_g% %}—1de

: (-\‘1 dz} = S dk’ <w (k, K')) N (k') (1.4)
The integration in (1.4) can be carried out by making the change of variables

ydy 2 An O (z0)
(4 —y2ylep T 3no Fotol.,

li

k
Yy k_o’ dr = —

in which case the points x, and x, go over into 1 and 0, respectively. If the integration limits are deter-
mined by the k' trajectory, then the upper limit will be x',, which is the point of reflection of the k' wave
and corresponds in terms of the new variables to the point [1- (k' /ke)2]!/2.

In scattering by particles we have, in accordance with 4],

_ ’ n O —o i o —@ 2
= B0 0= [ ()
Vre=Ty/ma  (n=1,¢) (1.5)
B = ()" / 32D 2nm vy, (1.6)
Recognizing that neither w nor w' varies on the trajectory (0.5), and replacing the exponential by the
Heaviside ¢-function
1, z>0

0 z0 (1.7)

exp(— ) = {1 — ), \‘)\(x):{

we can carry out the entire integration and obtain for {y(k)) the following expression:

< (k)> _ B ¢ dk/krN k/ GU%—,Q '6‘ /1 1 o — o \2
TalK)) = aS ( )'m'+“‘m“, -5 -_———-——‘—!k’“klvTa/ X

—{m—arcsin[1 — (k' /ko)2]”}, (an") =1
—arcsin {1 — (k' / ko], (nm') = — 1
n a—aresin[4 — (& / ko')* s, (o) =1 'y
are sin [1 . (ko/kol)zlxlz, (nn’) _ ,1 } ‘ kO ‘> I ko‘
n=k/|k|, n =k'/[kK|

ikt < ol

(1.8)

We note that none of the parameters characterizing the shape of the density-inhomogeneity well is
contained in the final result.

The change of the average matrix element (w (k, k) (1.4) in comparison with w{k, k') in a homo-
geneous plasma is trivial when |k'|<« |k] .

In this case

(w (&, K)> = Kk 4w (k, k')
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since, unlike the homogeneous plasma, where the k wave interacts on the entire length of its existence with
the k' wave, the interaction in a weakly inhomogeneous plasma takes place only on the path of the k' wave,
which is smaller by a factor k/k' (according to (0.4), the ranges in the well are related like the wave num-
bers at the minimum-density point).

The averaged kinetic equation (1.1), with an increment of the types (1.8), describes the change of the
number of quasiparticles at the level [on the trajectory (0.5)]. Unlike the case of a homogeneous plasma,
where the description pertains to the spectral density per unit volume, the normalization ratio is also suit-
ably altered in this case.

Since
L(k)=ak (a - (% . De)%)

where L(k) is the length of the qﬁasiparticle trajectory in the well, it follows that the number of waves on
the trajectory is

Pk)y=L{EN k)
and Eq. (1.1) can bé written in the form

ap (k)

=P {KPEIPEK), Pl K)=—¢ K.k

Here ¢ (k, k') depends already on the shape of the well, and its form can be easily obtained from a
comparison of (1.1) and (1.8).

2. Nonlinear Scattering by Ions

According to {4}, in the spectral region
k> (mo/my)h D =k (2.1)

the predominant effect in the direction of Langmuir waves with ions is scattering through an angle = with
a small change of the modulus of the wave vector. In this case, owing to the difference, albeit small, be-
tween the ranges in the well, the kinetic equation for the wave, which takes into account the predominant
interaction of waves having close wave numbers, acquires an additional term.

Let
K= —k+08k (k-6K)/|k|[6k|=1
Then
k*
Ll —BlN(kS k'N(k’)(k’—k)_—BlN(k)S d(6k) X [N (—k + 8k) — N (—k — 8k)] 8k 2.2)
but
+ AT— an (k)
N (—k+ 8k) — N (—k — 8k) = N* (—k) — N~ (— k) + 2" |_kak (2.3)
where
oN

N (=1 = N (ko 89— S| 8k, V(1) = N (k-8 + G| 8k

In a homogeneous plasma Eq. (2.2) takes the form

3 0y,
64nm v p;

(2.4)

aN(k) _ 2 *3_al Jpp—
at _"TBi(k) Ok |y’ B

In the case of an inhomogeneous plasma the expansion (2.3) does not reduce merely to a differential

term, since the Spatlal regions of the existence of the quasiparticles, which are characterized by the num-
bers N¥(—k) and N(—k) of the waves, differ by an amount ~k*a/k,, as the result of which the difference
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109 = {wk, 1) NV () d @.3)

k-8k . where w(k, k') is the scattering matrix element, and since the
- region in the well where quasiparticles with |ky'| < [k;| can
exist is smaller (Fig. 1) than the region where quasiparticles
with wave number k, exist, the integrals in (1.2) must in fact
' L be taken between the closest limits of the range in which the
AT % LAY X two interacting waves exist.

Flg. 1 Owing to the change of the phase volume in k space
when moving the trajectory (0.5), it is convenient to change

over in (1.3) to integration with respect to w by using relation (0.5). Taking into account the inequality
(0.8) and the symmetry of the well with respect to the point of the minimum density, we can write

k)Y = Sdm’N 1K’ ()] [§w(k, K) (% %%j}-ld :
; S (‘g%yl‘dx] == { k' Cw 0, 1)) N ()

Xo

(1.4}

The integration in (1.4) can be carried out by making the change of variables

2
k d O E))
y=—_, dx:———-——y—‘.u,/———, 2:_3A_” 7ne(2 a-?
° (1 —y)7"b o k207,

in which case the points x; and %, go over into 1 and 0, respectively. If the integration limits are deter-
mined by the k' trajectory, then the upper limit will be x',, which is the point of reflection of the k' wave

and corresponds in terms of the new variables to the point [1—-(k0'/k0)2]1/2.

In scattering by particles we have, in accordance with [4],

— ’ ¢ @ — o 1 » — o 2
T« (0 = Ba { aw'V () ey X [“T<m>]
U%‘a_—‘Ta/ma (o =1i,e)

Ba = ()2 / 32D 2nm v,

(1.5)
(1.6)

Recognizing that neither w nor w' varies on the trajectory (0.5), and replacing the exponential by the
Heaviside &-function

", >0
exp(— ¥ =~ ¢ (1 — 2, ¥ (z) = io i<0 (1.7)

we can carry out the entire integration and obtain for (y(k)) the following expression:

10> = B.\ Ak kN () e ! o —o |
Tl = Ba{akWN () 5 01— 5 |2 ]x

—{n—arcsin {1 — (k' / %0)*]7}, (on") =1
1 — aresin [1 — (k' / ko)?]s,  (nn') = — 1 } [ko” | <[k |
o s~ arcsin {1 — (ky/ky')2)"%= (') =1 .
arc sin [1 — (ko / k') 1%, (nn') = — 1 } Iko' [ > | ko
n=k/|kl, n=Kk/|kK|

(1.8)

We note that none of the parameters characterizing the shape of the density-inhomogeneity well is

contained in the final result.
The change of the average matrix element (W (k, k")) (1.4) in comparison with w(k, k*) in a homo-

geneous plasma is trivial when |k'|< |k]|.

In this case
(w ik, K'Y =k wk, k)
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since, unlike the homogeneous plasma, where the k wave interacts on the entire length of its existence with
the k' wave, the interaction in a weakly inhomogeneous plasma takes place only on the path of the k' wave,

which is smaller by a factor k/k* (according to (0.4), the ranges in the well are related like the wave num-
bers at the minimum-~density point).

The averaged kinetic equation (1.1), with an increment of the types (1.8), describes the change of the
number of quasiparticles at the level [on the trajectory (0.5)]. Unlike the case of a homogeneous plasma,
where the description pertains to the spectral density per unit volume, the normalization ratio is also suit-
ably altered in this case,

Since
L@=ok (a=(F2en,)")

where L(k) is the length of the quasiparticle trajectory in the well, it follows that the number of waves on
the trajectory is

Pk)y=L(EN (k)
and Eq. (1.1) can be written in the form

aP (k)
ot

= PR{PEIPMK), ok k)= —oK.E)

Here ¢ (k, k') depends already on the shape of the well, and its form can be easily obtained from a
comparison of (1.1) and (1.8).

2, Nonlinear Scattering by Ions

According to [4], in the spectral region
k> (momiyh Dt =K° @.1)

the predominant effect in the direction of Langmuir waves with ions is scattering through an angle = with
a small change of the modulus of the wave vector. Inthis case, owing to the difference, albeit small, be-
tween the ranges in the well, the kinetic equation for the wave, which takes into account the predominant
interaction of waves having close wave numbers, acquires an additional term.

Let
K= —k+0k (k-8K)/|k||8k|=1
Then
k*
N _gN (k)Sdk’N(k’) (& — k) = —BiN(k)S d(6k) X [N (—k + 8k) — N (—k — 8K)} 8k @.2)
0
but
. - ON (k)
N(—k48k) —~N(—k—8k) =N (*1;)—.1\/ (— k) + 22 |_k6k 2.3)
where

aN.
N*(—k) = N(—k—;—ék)—%%’— Ok NT(—k) =N (—k—8K) + ?k—[_kék
In 2 homogeneous plasma Eq. (2.2) takes the form

. Ye
ON (k) 2 ns IN 3w o, 2.4
5t T T 3% 3: (k) ok | ' B: Shnm oy 2-4)

In the case of an inhomogeneous plasma the expansion (2.3) does not reduce merely to a differential
term, since the sgatial regions of the existence of the quasiparticles, which are characterized by the num-
bers N™(—k) and N(—k) of the waves, differ by an amount ~k*a/k;, as the result of which the difference
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The scattering of waves of a spectrum localized in a well is described in terms of the number of
waves on the trajectory. The need for modifying Eq. (2.4), which corresponds to a homogeneous plasma,
becomes obvious if it is recognized that in an inhomogeneous plasma the number ofwaves per unit volume is
not conserved in scattering processes.

In conclusion, the author thanks A. S. Kingsep for suggesting the problem and for directing the work.
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